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ABSTRACT 

Twenty novel metal-thiosemicarbazone complexes (ML2) were calculated the stability 

constants (log12) based on the quantitative structure-property relationship (QSPR) models. 

The QSPR models were developed using multivariate linear regression (MLR), support vector 

regression (SVR), and artificial neural network (ANN) methods. Descriptors of the models 

were calculated from the PM7 and PM7/sparkle semi-empirical quantum mechanisms. The 

quality of the QSPR models was tightly controlled by the statistical values of OECD 

instructions and Tropsha’s standards. As a result, the best QSPRMLR model includes five 

variables: Dipole, xv2, xch5, SHBa, and 5C, with statistical values such as R2
train = 0.922, 

Q2
LOO = 0.861, and RMSE = 0.759. Besides, the best QSPRSVR model consists of capacity 

C = 10.0, gamma  = 0.10, and epsilon  = 0.1 with the number of support vectors equal to 42 

and suitable regression parameters: R2 = 0.925, and RMSECV = 0.536. The QSPRANN model 

with network architecture I(5)-HL(6)-O(1) and exponential transfer function was trained from 

descriptors of the MLR model and showed impressive results as R2
train = 0.986; Q2

test = 0.876 

and Q2
validation = 0.921. In addition, this study used an external validation (EV) dataset of 25 

log12 experimental values to build complete QSPR models with Q2
EV-MLR, Q2

EV-SVR, and Q2
EV-

ANN values of 0.834, 0.865, and 0.881, respectively. The positive results of the models can be 

used to find other new thiosemicarbazone and their complexes for applications in chemical, 

analytical, and environmental fields. 

Keywords: ANN, MLR, QSPR model, stability constants log12, SVR, metal-thiosemicarbazone 

complexes. 

1.  INTRODUCTION 

In organic chemistry, thiosemicarbazone is a common compound utilized extensively in 

related domains. For this reason, they have drawn the interest of scientists and are frequently 

researched and combined in studies. Because thiosemicarbazone's structure specifically binds 

nitrogen and sulphur donors, it is also particularly easy to form complexes with metal ions. 

Their compounds have also been used in numerous related studies, particularly in analytical 

chemistry, where the stability constant is a defining feature of the capacity to form complexes 

with the appropriate ligands. Thus, researchers are constantly interested in discovering novel 

thiosemicarbazone compounds with exceptional benefits and various uses [1]. 



Application of QSPR approach for development of novel metal-thiosemicarbazone…  

 

191 

Metal-thiosemicarbazone complexes have a wide range of biological actions, including 

anticancer and antibacterial qualities, which makes their study a rapidly expanding field in 

medicinal chemistry [2]. A strong substitute for forecasting the effectiveness of novel 

compounds before their synthesis is the application of quantitative structure-property 

relationship (QSPR) techniques, since the synthesis and characterization of these complexes 

require a substantial investment of time and resources. To expedite the medication discovery 

process, researchers can evaluate different molecular characteristics and correlate them with 

biological activities using computational models. Recent developments in cheminformatics 

have significantly improved our ability to examine molecular interactions, which is essential 

for forming complexes. Thus, the use of QSPR techniques promotes a more effective synthetic 

pathway, allowing for the discovery of promising therapeutic intervention candidates for 

disease treatment and offering information on the chemical makeup of metal-

thiosemicarbazone interactions [3]. 

A key tool in medicinal chemistry is QSPR modelling, which enables scientists to 

forecast a compound's biological activity based on its chemical structure. Drug development 

is streamlined by this computational strategy, which lessens the need for expensive and time-

consuming experimental techniques. QSPR's ability to match chemical descriptors with 

pharmacological effects through statistical approaches makes finding lead compounds with 

desired qualities easier [3]. The importance of QSPR is obvious when creating new agents. In 

such metal-thiosemicarbazone complexes, knowledge of the delicate relationship between 

structure and activity can spur the development of innovative antibacterial treatments. Recent 

research that synthesized pyrazolone derivatives and evaluated their biological activities using 

computational techniques has shown that QSPR successfully directs the development of 

compounds with enhanced efficacy against infections resistant to several drugs [4]. In the end, 

this combined strategy of synthesis and modelling increases the possibility of finding novel, 

efficient treatments. 

In order to determine the best models for creating new, significant compounds, this study 

builds QSPR models on complexes of thiosemicarbazone and metal ions using a 

comprehensive approach that combines quantum chemistry, new semi-empirical techniques 

(PM7 and PM7/sparkle) [5], and statistical computing/mathematical tools. The OECD's [6] 

and Tropsha's guidelines [7] are rigorously adhered to when creating QSPR models. 

The multivariable linear regression method (MLR) was used in this work to successfully 

construct the QSPR model on a data set that included 99 experimental values of complexes 

between thiosemicarbazone and the metal ions Ni2+, Cd2+, Fe3+, Co2+, Cu2+, Zn2+, Fe2+, and 

Mn2+ in aqueous solution (Table 1). In order to identify more accurate predictive models, we 

next created machine-learning models using the QSPRMLR model's descriptors, including the 

support vector regression (QSPRSVR) and the artificial neural network model (QSPRANN). 

Using these models, the study added synthetic functional groups to possible places in the 

original structural framework to anticipate the stability constant values for 20 unique 

complexes on some newly created thiosemicarbazone derivatives (Figure 6 and Figure 7). 

2.  METHODOLOGY 

The first step in this examination is to find experimental data since this study needs to 

begin with an empirical dataset [3]. 

2.1. Data mining 

The mononuclear complex (ML2) of two thiosemicarbazone ligands (L) and a metal ion 

(M) is the subject of the investigation; Fig. 1 depicts the ligand and complex structures. 
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Consequently, the following formula is used to get the stability constant (12): 
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Figure 1. (a) Structure of thiosemicarbazone; (b) Structure of its complex [8] 

Table 1. 99 stability constants of complexes with average (logβ12,avg) values are included 

in the experimental dataset (n). 

No. 
Thiosemicarbazone Metal 

ions 

Number of 

complexes, n 
logβ12,avg Ref. 

R1 R2 R3 R4 

1 H H -CH3 -C10H13OBr Ni2+ 1 6.549 [8] 

2 H H -C2H5 -C10H13O2Br Ni2+ 1 8.807 [9] 

3 H H -C2H5 -C10H13O2Br Cd2+ 1 6.927 [10] 

4 H H H -C13H16NO3 Fe3+ 1 33.320 [11] 

5 H H -C3H7 -C6H4O2Br Co2+ 1 10.4362 [12] 

6 H -C6H5 -C6H5 -C5H4N Cu2+ 16 11.161 [13] 

7 H -C6H5 -C6H5 -C5H4N Co2+ 16 10.399 [13] 

8 H -C6H5 -C6H5 -C5H4N Zn2+ 16 11.161 [13] 

9 H -C6H5 -C6H5 -C5H4N Ni2+ 16 10.186 [13] 

10 H H -C2H5 -C10H13O2Br Fe2+ 1 7.086 [14] 

11 -CH3 -CH3 -C5H4N -C5H4N Fe2+ 1 10.250 [15] 

12 -CH3 -CH3 -C5H4N -C5H4N Co2+ 1 12.470 [15] 

13 -CH3 -CH3 -C5H4N -C5H4N Ni2+ 2 11.445 [15,16] 

14 -CH3 -CH3 -C5H4N -C5H4N Zn2+ 2 7.880 [15,16] 

15 H H -C5H4N -C5H4N Mn2+ 1 7.360 [16] 

16 H H -C5H4N -C5H4N Ni2+ 1 11.290 [16] 

17 H H -C5H4N -C5H4N Cu2+ 1 12.160 [16] 

18 H -CH3 -C5H4N -C5H4N Mn2+ 1 7.000 [16] 

19 H -CH3 -C5H4N -C5H4N Ni2+ 1 11.110 [16] 

20 H -CH3 -C5H4N -C5H4N Cu2+ 1 12.430 [16] 

21 H -CH3 -C5H4N -C5H4N Zn2+ 1 10.460 [16] 

22 H -C2H5 -C5H4N -C5H4N Mn2+ 1 7.2000 [16] 

23 H -C2H5 -C5H4N -C5H4N Ni2+ 1 11.130 [16] 
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No. 
Thiosemicarbazone Metal 

ions 

Number of 

complexes, n 
logβ12,avg Ref. 

R1 R2 R3 R4 

24 H -C2H5 -C5H4N -C5H4N Cu2+ 1 12.580 [16] 

25 H -C2H5 -C5H4N -C5H4N Zn2+ 1 10.270 [16] 

26 -CH3 -CH3 -C5H4N -C5H4N Mn2+ 1 7.7600 [16] 

27 -CH3 -CH3 -C5H4N -C5H4N Cu2+ 1 12.490 [16] 

28 H -C6H5 -C5H4N -C5H4N Ni2+ 1 11.320 [16] 

29 H -C6H5 -C5H4N -C5H4N Cu2+ 1 12.410 [16] 

30 H -C6H5 -C5H4N -C5H4N Zn2+ 1 10.210 [16] 

31 H -C3H5 -C5H4N -C5H4N Mn2+ 1 7.3300 [16] 

32 H -C3H5 -C5H4N -C5H4N Ni2+ 1 11.140 [16] 

33 H -C3H5 -C5H4N -C5H4N Cu2+ 1 12.530 [16] 

34 H -C3H5 -C5H4N -C5H4N Zn2+ 1 10.220 [16] 

35 H H -C6H4OH -C6H4OH Cu2+ 1 11.357 [17] 

36 H H -C6H4OH -C6H4OH Co2+ 1 12.215 [17] 

37 H -C6H5 -CH3 - C9H10O2Br Ni2+ 1 10.085 [18] 

A big data set is first gathered from empirical investigations, and then smaller data sets 

are separated using the clustering method; in this case, the Agglomerative Hierarchical 

Clustering (AHC) method is applied sequentially. The results of a database including 99 metal-

thiosemicarbazone complex stability constant values were chosen to build the models in this 

study. Table 1 displays the comprehensive statistics. 

Table 2. Descriptive statistics for the training and test datasets for building models 

Statistical values Training data set Test data set 

mean 10.738 10.740 

standard error 0.266 0.527 

SD 2.641 2.635 

sample variance 6.979 6.947 

range 27.76 9.739 

minimum 5.560 6.900 

maximum 33.320 16.639 

observations 99 25 

 

Table 2 and Figure 2 show a high similarity between the training and validation data sets 

in terms of both descriptive statistics and distribution shape. This is favorable for training 

machine learning models, ensuring good representativeness and generalization ability when 

applying the model in practice. Because the training and validation data have similar 

distributions in terms of median, variance, distribution shape, and data point density, the data 

is reasonably divided, without “data leakage”. The training model has a good generalization 

ability to unseen data (validation), reducing the risk of overfitting. 
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Figure 2. The descriptive statistics and distribution of the training and validation data sets 

2.2. Descriptors 

The variables of the built-in model equation are known as the descriptors of the model 

utilized in QSPR modelling research. They consist of molecular and quantum descriptors. 

While the molecular descriptors describe the structure of the study molecules in QSPR models 

and are computed from specialized tools for complicated structures that have been optimized, 

the quantum description is released from the structure optimization process [3]. 

Once the calculated descriptors have been summarized, the variables must be filtered; 

those with the same value of greater than 70% must be eliminated from the data set. The 

stability constant values (logβ12,exp) of experimental complexes and structural parameters are 

thus included in the data collection. Lastly, we utilize this dataset to create QSPR models, 

including support vector regression, artificial neural networks, and multivariable linear 

regression models. 

2.3. QSPR modeling 

2.3.1. Multiple linear regression models  

The QSPR model was constructed in the study using multivariable linear regression. One 

of the statistical techniques frequently employed in research projects is this one. The degree 

of the linear relationship between the dependent variables (the expected values) and several 

independent factors is ascertained using this method. Here, the independent variables are the 

chemical descriptors, and the dependent variable is the stability constant value (log12) of the 

complexes between thiosemicarbazone and metal ions. Equation (2) represents the model of 

this approach: [3] 

 0 1 1 2 2. . ... .k kY X X X    = + + + + +  (2) 

where Y is the dependent variable; β0, β1, β2…, βk are regression parameters of the model; Xi 

corresponds to the ith explanatory variable (with i = 1 to k) and  is the random error. 
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2.3.2. Support vector regression models 

Support vector regression (SVR) is a machine learning (ML) technique that is commonly 

used in statistical mathematics and computer science to develop predictive models and data 

analysis algorithms such as classification, regression analysis, and prediction [3]. The support 

vector algorithm is a nonlinear algorithm, and the algorithm was first discovered in 1963 in 

Russia by Vapnik and Lerner [19]. In 1992, Vapnik et al. [20] proposed setting up a regression 

model by applying the kernel trick. The algorithm replaces vector scalar products with a 

nonlinear kernel function. This allows the algorithm to fit the maximization of the margins of 

the hyperplane in the transformation space, and the results show that the algorithm works well. 

The kernel parameters, including capacity (C), gamma (), and the number of support 

vectors (n), as well as the kernel function selection, all affect SVR efficiency. Cross-evaluation 

is typically used to verify each parameter selection, and the kernel parameters with the highest 

accuracy are selected. The model is trained on the complete training dataset using an 

appropriate kernel function and optimizing the parameters. A variety of kernel functions are 

used when training a regression model. In order to find the best parameters, the study employed 

the Radial Basis Function (RBF) as follows [20]: 

 
2( , ) exp{ || . || },   > 0i j i jK x x x x r = − +  (3) 

here  is the kernel parameter, r is a constant. 

2.3.3. Artificial neural network models 

An artificial neural network (ANN), which approximates neurons in the biological brain, 

functions on a collection of interconnected units or nodes known as artificial neurons. In 

traditional ANN implementations, each artificial neuron's output is determined by a non-linear 

function of the sum of its inputs, and the signal at the artificial neuron's link is genuine. 

Artificial neurons are typically put together in layers. Various layers can transform their input 

in different ways. The transfer function expresses this relationship, and the two transfer 

functions, hyperbolic tangent and exponential, were employed in this investigation [21]. 

Additionally, this study employs a back-propagation technique and a multi-layer 

perceptron (MLP) network type. An input layer, an output layer, and one or more hidden layers 

make up the structure of this MLP-type network. The least squares (LMS) algorithm is a 

generalised version of the back-propagation method. An approximation approach for 

determining the places at which network performance is optimal was proposed by Rumelhart 

et al. in 1986 [22]. The following procedures are used to accomplish the algorithm: back-

propagation, direct propagation of calculations throughout the network, and appropriately 

updating the weights and offsets. The method terminates when the objective function's value 

is sufficiently tiny. 

2.4. Model evaluation  

An essential first step in verifying the accuracy of the constructed QSPR model is model 

evaluation. Two separate data sets are evaluated internally and externally as part of the model 

evaluation process. The initial training dataset with 99 experimental values (Table 1) was 

subjected to internal evaluation using the evaluation statistics index Q2
LOO (>0.6) in 

conjunction with cross-validation (CV) based on the technique of eliminating leave-one-out 

(LOO) and evaluation index R2 (>0.6). Furthermore, models with an evaluation index of Q2
EV 

(>0.5) are evaluated externally (EV) on the independent data set [7]. Using various data sets, 

these amounts are computed using the same formula as follows [3]: 
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where Yi, Ŷi, and Ȳ are the experimental, predicted, and average values. 

The standard error (SE) is a crucial tool for detecting data and assessing how error models 

have changed. Since SE and sample size are theoretically inversely related, a higher number 

of observations results in a lower value. The formula is used to determine it [3]: 

 
2

i i

1

ˆ(Y Y )

1

N

iSE
N k

=

−

=
− −


 (7) 

here, N and k are the number of variables of the training set and the model, respectively. 

Using an appropriate number of support vectors, the SVR model search method optimizes 

parameters like capacity (C), gamma (γ), and epsilon (). Development occurs until a slight 

variation exists between cross-validation (RMSECV) and calibration (RMSEC). The RMSECV 

values, which are determined using equation [20], should ideally be around the RMSEC values 

in the QSPRSVR modelling technique. 

 2

1

1 ˆ( )
n

CV i i

i

RMSE Y Y
n =

= −  (8) 

here, Yi and Ŷi are the experimental and predicted values. 

Additionally, this study compares the model's quality using mean absolute relative error 

(MARE,%) values. It is displayed as follows: [23] 

 
12,exp 12,pred

12,exp

log log1
,% .100

log
MARE

n

 



−
=   (9) 

here, n is the number of samples; 12,exp and 12,pred are experimental and calculated stability 

constants, respectively. 

3. RESULTS AND DISCUSSION 

3.1. Development of QSPRMLR models 

The multivariate regression models were constructed based on the initially collected 

dataset. The construction process was divided into a training subset of 79 values (about 80%). 

A CV subset of 20 values (approximately 20%) was extracted from the 99 sample values of 

experimental complexes that comprised the data set used to construct QSPRMLR models. 

The QSPRMLR models were constructed using the backward elimination and forward 

regression techniques on the Regress system. The predictive ability of the QSPRMLR models 

was cross-validated using the leave-one-out (LOO) method with Q2
LOO statistics. The models' 

quality is determined by statistical standards such as R2
train, R2

adj, Q2
LOO, SE, and Fstat, which 

are used to identify a suitable model. Table 3 shows the statistical values of the entirely 

constructed QSPRMLR models. Therefore, the change in R2
train, Q2

LOO, and SE values 

determines which variables (k) will yield the best QSPRMLR model. A model is considered 

acceptable if its R2
train and Q2

LOO values are as close to 1.0 as possible and meet the statistical 

requirements (>0.6). In addition, the SE value should be as low as feasible. The results 

obtained seven QSPRMLR models that meet the statistical requirements presented in Table 3. 
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Table 3. Seven built QSPRMLR models (k = 5) with statistical values 

Notation QSPRMLR models 

MLR1 
logβ12 = -27.70 + 63.47xch5 – 2.977S6 + 0.206SHBa + 0.514vx1 + 0.362Dipole; 

R2
train = 0.921, R2

adj = 0.917, Q2
LOO = 0.868, SE = 0.760; PRESS = 90.16, Fstat = 218.33 

MLR2 

logβ12 = -27.34 + 0.13LUMO + 0.48Dipole + 0.583xv1 + 61.61xch5 + 

0.192SHBa; R2
train = 0.906, R2

adj = 0.901, Q2
LOO = 0.877, SE = 0.832, PRESS = 83.86, 

Fstat = 178.88 

MLR3 

logβ12 = -22.32 + 0.365Dipole + 0.228xv2 + 78.88xch5 + 0.141SHBa + 

10.60C5; R2
train = 0.922, R2

adj = 0.918, Q2
LOO = 0.861, SE = 0.759, PRESS = 95.08, 

Fstat = 218.98 

MLR4 
logβ12 = -13.76 + 0.38Dipole + 122.27xch5 + 45.68C5 + 12.14N4 – 0.831Saasc; 

R2
train = 0.917, R2

adj = 0.913, Q2
LOO = 0.881, SE = 0.780, PRESS = 81.18, Fstat = 206.25 

MLR5 

logβ12 = -25.26 + 0.000053Core-core Repulsion + 0.422Dipole + 0.194SHBa + 

56.74xch5 + 0.28xv2; R2
train = 0910, R2

adj = 0.905, Q2
LOO = 0.827, SE = 0.814, PRESS 

= 118.63, Fstat = 187.83 

MLR6 
logβ12 = -24.79 + 0.95Ovality + 85.97xch5 + 10.83C5 + 0.177SHBa + 0.192xv2; 

R2
train = 0.902, R2

adj = 0.897, Q2
LOO = 0.840, SE = 0.847, PRESS = 109.57, Fstat = 172.13 

MLR7 

logβ12 = -21.46 + 0.538Dipole + 0.352xv2 + 65.63xch5 – 0.012Hf + 

0.768Gmax; R2
train = 0.917, R2

adj = 0.913, Q2
LOO = 0.839, SE = 0.781, PRESS = 109.79, 

Fstat = 205.70 

All seven models in Table 3 meet the statistical requirements; however, external 

validation with an independent dataset is necessary to select a complete model. The study uses 

a dataset of twenty-five experimental complexes and their stability constant values (log12,exp) 

presented in Table 4.  

Table 4. The 25 experimental log12,exp values of complexes in the EV dataset 

1 
Ligands Metal 

ions 
logβ12.exp ref. 

R1 R2 R3 R4 

1 H H  - C6H5  -C2H4NO Cu2+ 7.916 [24] 

2 H H  - C6H5  -C2H4NO Ni2+ 9.711 [24] 

3 H -CH3 -CH3 -C5H4N Ni2+ 11.919 [25] 

4 H -C6H5 -CH3 -C2H4NO Cu2+ 7.287 [26] 

5 H H -CH3 -C5H4N Hg2+ 12.875 [27] 

6 H -C6H5 -CH3 -C10H12NO Co2+ 9.871 [28] 

7 H -C6H5 -CH3 -C10H12NO Ni2+ 10.140 [28] 

8 H -C6H5 -CH3 -C10H12NO Ag+ 9.736 [28] 

9 H -C6H5 -CH3 -C10H12NO Cd2+ 10.818 [28] 

10 H -C6H5 -CH3 -C10H12NO Hg2+ 11.256 [28] 

11 H H -C5H4N -C5H4N Zn2+ 10.370 [17] 

12 H -C6H5 -C5H4N -C5H4N Mn2+ 7.410 [17] 
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1 
Ligands Metal 

ions 
logβ12.exp ref. 

R1 R2 R3 R4 

13 H H -CH3 -C5H4N La3+ 13.580 [29] 

14 H H -CH3 -C5H4N Pr3+ 13.830 [29] 

15 H H -CH3 -C10H12NO Cu2+ 8.069 [30] 

16 H H -CH3 -C10H12NO Hg2+ 10.675 [30] 

17 H H -CH3 -C10H12NO Ag+ 9.854 [30] 

18 H H -CH3 -C10H12NO Ni2+ 6.900 [30] 

19 H H -CH3 -C6H4OH Ni2+ 8.630 [31] 

20 H H -CH3 -C6H4OH Cu2+ 9.810 [31] 

21 H H H -C10H6OH Cd2+ 9.920 [32] 

22 H H - -C9H7NO Cu2+ 16.639 [33] 

23 H H - -C9H7NO Ni2+ 15.876 [33] 

24 H H - -C9H7NO Zn2+ 15.056 [33] 

25 H -C6H5 -CH3  - C9H10O2Br Cu2+ 10.363 [34] 

External validation (EV) methods are needed to create a predictive model. Although 

authors sometimes skip this phase, it is deemed crucial for creating a strong prediction model 

and needs to be carried out on a separate dataset. Accordingly, the study conducted the EV in 

conjunction with the search for the optimal ANN model using the external validation dataset, 

which consisted of 25 samples. Table 4 provides detailed data for 25 experimental 

observations. 

Q2
EV and MARE (%) are used to select the most suitable model. The value of Q2

EV should 

be greater than 0.5 and as close to 1.0 as possible, and the smaller the value of MARE of the 

model, the closer the model can predict the actual value. According to the results in Figure 3a, 

the MLR3 model verified the correlation between the experimental and predicted values, with 

the highest Q2
EV value. 

a)  

b) 

 

Figure 3. (a) Q2
EV and MARE(%) values for selecting MLR (b) Contribution of 

variables in MLR3 model (k of 5) 
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Furthermore, the average percentage, MPmxk, is the contribution of each independent 

variable in the selected QSPR models (with k of 4 to 6) and is determined according to formula 

(10) [23] 

( ), , , , , ,

1 1 1

1 1
,% 100. 100.

n k n

k m i m i m k m k m i m i total

j i j

MPx b x b x b x C
n n= = =

 
= = 

 
    (10) 

here n = 99 is the number of compounds; m is the number of compounds used to determine 

the Pmxk value.  

Table 6. Contribution of variables in MLR3 models with k of 4 to 6. 

bi 
MLR3 model MPmxk, % GMPmxk, 

% k = 4 k = 5 k = 6 k = 4 k = 5 k = 6 

b0 -23.85 -22.32 -23.47 - - - - 

b1 0.389 0.365 0.408 2.100 2.033 1.596 2.100 

b2 0.326 0.228 0.457 38.850 28.247 38.618 38.850 

b3 59.34 78.88 76.69 37.762 52.072 34.685 37.762 

b4 0.196 0.141 0.126 21.288 15.816 9.815 21.288 

b5 - 10.60 5.393 - 1.832 0.670 0.834 

b6 - - 0.825 - - 14.616 4.872 

As a result, the stability constant values (log12,pred) are predicted based on the Q2
EV 

coefficient and the MARE(%) values between the experimental and predicted values among 

the MLR models in Figure 3. As a result, the MLR3 model was chosen to develop the SVR, 

ANN models, and new ligands and complexes because it achieved the highest Q2
EV-MLR3 value 

of 0.834 and the lowest MARE value (14.501%). 

To prevent overfitting, the study performed variable selection for the selected MLR3 model 

by controlling the inclusion of variables in this model. The results are presented in Table 5. The 

changes in regression values and the increase in the number of variables k, as shown in Figure 

4b, show that the choice of the 5-variable model of the MLR3 model is appropriate. 

Table 5. The results of the built MLR3 models (k of 1 to 6). 

k Descriptors SE R²train R²adj Q²LOO Fstat 

1 x1 2.238 0.290 0.283 0.094 39.60 

2 x1/x2 1.909 0.489 0.478 0.108 45.87 

3 x1/x2/x3 1.591 0.648 0.637 0.251 58.40 

4 x1/x2/x3/x4 0.904 0.888 0.883 0.722 185.91 

5 x1/x2/x3/x4/x5 0.759 0.922 0.918 0.861 218.98 

6 x1/x2/x3/x4/x5/x6 0.732 0.934 0.929 0.916 216.28 

Notation of molecular descriptors 

Dipole x1  SHBa x4 

xv2 x2  5C x5 

xch5 x3  knotpv x6 
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a)  
b)  

c)  d)  

Figure 4.  (a) Change of regression coefficient according to variable k; 

(b,c,d) Correlation of experimental (log12,exp) versus predicted (log12,pred) values of 

MLR3, SVR (a), and ANN (b) models on the training and test sets 

The regression coefficients and the contributions of MPmxk and GMPmxk in the MLR3 

models for k values ranging from 4 to 6 are presented in Table 6. The significant contributions 

of the variables are organized according to their GMPmxk values in the following order: 5C < 

Dipole < SHBa < xv2 < xch5. 

Figure 4 shows that the correlation between experimental stability constants and 

anticipated values derived from QSPR models proves their predictive capability, as evidenced 

by the high R2
train, Q2

LOO/Q2
CV, and SE/RMSECV statistical values. The results indicate that the 

calculated values are consistent with the experimental data, even though the complexes 

utilized in the validation set were not included in developing the QSPR models. Three QSPR 

models were developed, and all of them demonstrated strong predictability with low errors as 

evaluated by SE and MARE. This suggests that these models consistently apply to determining 

the stability constants log12. The ANN model had the highest predictability among the 

models. The MLR3 model had the lowest predictability and the highest error rates. This 

disparity is also apparent when comparing the statistical performance of the various QSPR 

models, as shown in Figure 4. Thus, the correlation between the observed and predicted values 

shows that the performance, reliability, and validity of the QSPR prediction model are 

consistent with statistical standards. 
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3.2. Development of QSPRSVR models 

As previously stated, the study uses machine-learning models to improve the predictive 

ability of MLR models. Therefore, these models are developed based on the descriptors 

selected from the MLR model results. In this case, SVR and ANN are two machine learning 

methods chosen in this work.  

The QSPRSVR model is constructed using the best possible selection of kernel function 

types and parameters, such as gamma (γ) and capacity (C). This study chose the RBF radial 

function for vector machine regression. The predictive power of the SVR model was verified 

using the indices of the RMSEC (root mean squared error from calibration) and RMSECV (root 

mean squared error from CV) values. 

According to the results of the QSPRMLR model, this study can set up the 5-level 

parameters of the gamma (γ) in the range 0.01-0.05-0.1-0.5-1.0 and the capacity (C) in 1.0-5-

10-20-50 using input factors such as Dipole, xv2, xch5, SHBa, and C5. The following is the 

display of the optimized parameters. Fundamentally, the RMSECV value is the least, and the 

correlation coefficient (R2) needs to be higher than 0.6 [5]. Hence, Table 7's results highlight 

the optimal values, such as the capacity (C) value of 10 and the gamma () value of 0.1; in 

addition, the results include the epsilon () of 0.1, the number support vector of 42, the R2 

value of 0.925, and the RMSECV of 0.536. 

Table 7. Optimal parameters of the SVR model with the R2
train and RMSECV values 

R2/RMSECV C = 1.0 C = 5 C = 10 C = 20 C = 50 

Gamma 1 2 3 4 5 

0.01 0.252/3.152 0.487/1.825 0.636/1.024 0.562/1.512 0.436/2.021 

0.05 0.461/1.831 0.672/0.987 0.736/0.786 0.626/1.125 0.556/1.668 

0.1 0.535/1.756 0.762/0.689 0.925/0.536 0.806/0.608 0.642/1.002 

0.5 0.621/1.622 0.659/0.982 0.769/0.723 0.765/0.774 0.545/1.625 

1.0 0.539/1.888 0.526/1.699 0.669/0.976 0.698/0.865 0.469/1.873 

3.3. Development of QSPRANN models 

Typically, a whole ANN model is constructed in two steps. In the initial phase, the models 

were trained using a dataset of 99 experimental values and surveyed using five descriptors of 

the aforementioned results (Table 1). A 70% training subset, a 15% test subset, and a 15% CV 

subset of approximation were used in the training procedure. The MLP-type ANN is I(5)-

HL(m)-O(1), with the output layer O(1) being the log12 values and the input layer I(5) being 

five neurons: Dipole, xv2, xch5, SHBa, and C5. The buried layer's neuron count (m) is rapidly 

determined. Table 8 displays the initial m values results. 

An external dataset comprising 25 samples was used to assess the MLP-ANN models in 

the following stage (Table 5). In a similar approach to the choice of MLR models, the two 

indices used to identify the optimal model are Q2
EV and MARE(%). Acceptable Q2

EV values 

(>0.5) are then obtained via the best QSPRANN model, with the MARE(%) value being the 

least value. 

  



Nguyen Minh Quang, Huynh Ngoc Chau, Pham Van Tat 

 

202 

Table 8. The results of MLP-ANN models I(5)-HL(m)-O(1) in the first step 

ANN 
MLP-ANN 

models 
R2

train Q2
test Q2

CV 
Train. 

error 

Test 

Error 

Valid. 

Error 

Transfer 

Function 

ANN1 I(5)-HL(3)-O(1) 0.978 0.713 0.903 0.201 0.103 0.153 Tangent 

ANN2 I(5)-HL(10)-O(1) 0.989 0.958 0.956 0.100 0.017 0.163 Tangent 

ANN3 I(5)-HL(4)-O(1) 0.988 0.972 0.923 0.111 0.011 0.149 Exponential 

ANN4 I(5)-HL(5)-O(1) 0.980 0.761 0.894 0.180 0.088 0.151 Exponential 

ANN5 I(5)-HL(6)-O(1) 0.986 0.877 0.922 0.129 0.046 0.168 Exponential 

According to Figure 5a results, the ANN5 model is the ultimate choice, with a MARE 

value (%) of 7.665 and Q2
EV statistical values of 0.881. Therefore, the ANN5 model with the 

network architecture I(5)-HL(6)-O(1) was selected to identify new ligands and complexes 

(Figure 5b). 

a)  
 

b) 

Figure 5. a) Q2
EV and MARE(%) values for selecting ANN models; b) QSPRANN model 

of network architecture MLP-ANN I(5)-HL(6)-O(1) 

In addition, the values demonstrate the models' acceptable predictability (>0.5). 

Additionally, the MLR3, SVR, and ANN5 I(5)-HL(6)-O(1) models had MARE(%) values of 

14.501, 11.655, and 7.655, respectively. The findings show that the SVR models outperform 

the MLR3 model regarding predictive power, while the ANN5 models have the highest 

predictive power. This indicates that the models developed using clever machine-learning 

methods are suitable for practical use. On the EV dataset of all three models, the difference 

between the estimated values (logβ12,pred) and the initial values (logβ12,exp) is also examined 

using the single-factor ANOVA approach. F = 0.3688 < F-crit(0.05) = 3.1787; the results show 

that the difference between these results is not significant. 

3.5. Design and prediction of new ligand and complexes  

In order to create novel complexes, this effort looks for possible thiosemicarbazone 

compounds that correspond to the substance group of the building. By adding possible 

functional groups to the basic structure, these novel compounds are created (Figure 1a). To 

guide future research, we chose groups for the project that have been effectively synthesized 

in practice and have a high level of biological activity; these properties are the same as 

thiosemicarbazone and related complexes [35,36]. Five model descriptors were chosen to 

investigate new thiosemicarbazone-ligand complexes: Dipole, xv2, xch5, SHBa, and C5. 

1
4
.5

0
1

1
1
.6

5
5

2
7
.7

5
1

3
7
.7

0
4

1
6
.9

1
4

1
6
.8

7
9

7
.6

5
5

0
.8

3
4

0
.8

6
5

0
.4

8
1

0
.3

2
5

0
.6

0
9

0
.7

9
1 0

.8
8

1

M
L
R

SV
R

A
N

N
1

A
N

N
2

A
N

N
3

A
N

N
4

A
N

N
5

0

10

20

30

40

50

 MARE,%

 Q2
EV

QSPR models

M
A

R
E

,%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
2

E
V



Application of QSPR approach for development of novel metal-thiosemicarbazone…  

 

203 

(a)   (b)  

Figure 6. The structure of 10H-phenothiazine (a) and 9H-carbazole (b) 

Derivatives of 10H-phenothiazine and 9H-carbazole (Figure 6) are utilized to create 

novel thiosemicarbazone and complex them with common metal ions such as Zn2+, Ni2+, Ag+, 

Cd2+, and Cu2+. Groups are attached to the ligand structure at the R4 site to create new ligands; 

the hydrogen atoms are present at the original structure's R1, R2, and R3 sites. 
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Figure 7. Structures at R4 site of 15 new thiosemicarbazone derivatives 

 

Figure 8. The log12,new calculated values of 20 new complexes from the models 

Similar characteristics of newly optimized complexes were added to the training dataset 

to precisely construct and screen several novel thiosemicarbazone-ligand compounds. The 
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stability constants that have to surpass the AD and Outliers requirements were then predicted 

by new complexes using the absolute values D-Cook (|D-Cook| < 1.0) [6] and the results are 

presented in Figure 9. This led to the creation of 15 new thiosemicarbazone ligands and 20 

new metal-ligand complexes, and three developed models were used to calculate the stability 

constants of the complexes (log12,new). Figures 7 and 8 present the findings. The QSPRMLR3, 

QSPRSVR, and QSPRANN5 models are among the three whose predicted outcomes were 

compared using the one-way ANOVA technique. It indicates that the difference is not 

significant (F = 0.0489 < F-crit(0.05) = 3.1588). 

  

Figure 9. The D-Cook values of the training set and new design complexes 

4. CONCLUSION 

An initial success has been achieved in this study by building predictive models (QSPR) 

for the creation of novel thiosemicarbazone ligands and their complexes. Three models were 

constructed using support vector regression, multivariable linear regression, and artificial 

neural networks. They have been constructed using the external validation dataset of 25 

samples of thiosemicarbazone-based complex values and the training dataset of 99 stability 

constant values. Furthermore, this work optimized complex structures using the semi-

empirical QM/PM7-PM7/sparkle version approach. Using good statistical criteria 

(R2
train = 0.922, Q2

LOO = 0.861, SE = 0.759, and Q2
EX-MLR = 0.834), the chosen MLR model 

with five variables was constructed. The best QSPRSVR model findings included good 

regression parameters (R2 = 0.925, RMSECV = 0.536, and Q2
EX-SVR = 0.865), support vectors 

number equal to 42, and ideal model parameters such as capacity C = 10.0, gamma  = 0.10, 

and epsilon  = 0.1. Excellent results (R2
train = 0.986, Q2

test = 0.876, Q2
validation = 0.921, and 

Q2
EX-ANN = 0.881) were extracted by the MLP-ANN of the I(5)-HL(6)-O(1) model. Lastly, 

with anticipated stability constants (log12,new), the derived models guide the design of 15 new 

thiosemicarbazone ligands and 20 new thiosemicarbazone-based complexes. These new 

compounds can be applied in a variety of disciplines. Furthermore, many ligands and their 

complexes may be found using the outcomes of QSPR-based models. 
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ỨNG DỤNG MÔ HÌNH QSPR ĐỂ PHÁT TRIỂN CÁC PHỨC CHẤT MỚI GIỮA ION 

KIM LOẠI VÀ DẪN XUẤT THIOSEMICARBAZONE  
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Hai mươi phức chất giữa ion kim loại và phối tử thiosemicarbazone mới (ML2) đã được 

tính toán hằng số bền (log12) dựa trên các mô hình mối quan hệ định lượng cấu trúc-tính chất 

(QSPR). Các mô hình QSPR được phát triển bằng các phương pháp hồi quy tuyến tính đa biến 

(MLR), hồi quy hỗ trợ vectơ (SVR) và mạng thần kinh nhân tạo (ANN). Các mô tả của mô 

hình được tính toán bằng phương pháp cơ học lượng tử (QM) bán thực nghiệm PM7 và 

PM7/sparkle. Chất lượng của các mô hình QSPR được kiểm soát chặt chẽ bởi các giá trị thống 

kê theo hướng dẫn của tổ chức OECD và các tiêu chuẩn của Tropsha. Kết quả mô hình 

QSPRMLR tốt nhất gồm năm biến: Dipole, xv2, xch5, SHBa và 5C, với các giá trị thống kê như 

R2
train = 0,922; Q2

LOO = 0,861 và RMSE = 0,759. Bên cạnh đó, mô hình QSPRSVR tốt nhất bao 

gồm C = 10, gamma  = 0,10 và epsilon  = 0,1 với số vectơ hỗ trợ bằng 42 và các tham số 

hồi quy tốt: R2 = 0,925 và RMSECV = 0,536. Mô hình QSPRANN với kiến trúc mạng I(5)-HL(6)-

O(1) và hàm truyền exponential đã được tìm thấy qua quá trình luyện mạng từ các mô tả của 

mô hình QSPRMLR và cho kết quả khá ấn tượng: R2
train = 0,986; Q2

test = 0,876 và Q2
validation = 

0,921. Ngoài ra, nghiên cứu này đã sử dụng tập dữ liệu đánh giá ngoại (EV) gồm 25 giá trị 

thực nghiệm log12 để xây dựng các mô hình QSPR hoàn chỉnh với các giá trị Q2
EV-MLR, Q2EV-

SVR và Q2
EV-ANN lần lượt là 0,834; 0,865 và 0,881. Kết quả nhận được từ các mô hình có thể 

được sử dụng để phát triển các dẫn xuất thiosemicacbazone và các phức chất mới nhằm tăng 

khả năng ứng dụng trong các lĩnh vực hóa học, phân tích và môi trường. 

Từ khóa: ANN, hằng số bền logβ12, MLR, mô hình QSPR, phức chất giữa ion kim loại và  

thiosemicarbazone, SVR. 
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