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ABSTRACT

Vietnamese agriculture is increasingly vulnerable to the impacts of climate change, which
has led to more frequent and severe crop diseases, making it challenging for farmers to sustain
productivity. In response, the heavy use of chemical fertilizers and pesticides has resulted in soil
degradation, raised serious food safety, public health concerns, and environmental problems.
Addressing these issues requires a shift toward more sustainable agricultural practices that can
support both productivity and ecological resilience. This paper examines how Vietnam can move
toward a more sustainable agricultural model by integrating biotechnology and artificial
intelligence (Al). Biotechnology provides innovative solutions that reduce dependence on
harmful chemicals while improving soil quality and crop health. When integrated with Al, it can
enhance the development of biofertilizers, biopesticides, and high-yield, climate-resilient crop
varieties with greater precision and efficiency. Drawing on global case studies, this research
highlights how Vietnam can adopt these technologies to tackle its specific agricultural
challenges. The adoption of biotechnology and Al-driven solutions has the potential to transform
Vietnamese agriculture into a high-tech, environmentally friendly system that balances
productivity with sustainability. However, realizing this transformation requires substantial
investment in biotech research and infrastructure, the development of a skilled workforce, and
the establishment of clear, comprehensive regulatory frameworks for innovations. By learning
from international experiences and adapting them to local conditions, Vietnam can build a
resilient and sustainable agricultural future that ensures both food security and environmental
protection in the face of climate change.

Keywords: Agricultural biotechnology, artificial intelligence, biofertilizers, biopesticides,
CRISPR/Cas9, sustainable agriculture.

1. INTRODUCTION

Agriculture is a fundamental sector in material production, utilizing land, crops, and
livestock to provide food and raw materials for industry. It intertwines economic activities with
natural reproduction processes. In Vietnam, agriculture remains the backbone of the economy,
contributing 12% to GDP and supporting over 62% of the rural population [1]. Rooted in
indigenous knowledge and traditional practices, such as crop rotation, composting, and use of
synthetic inputs, Vietnamese agriculture is labor-intensive but environmentally vulnerable,
leading to nutrient depletion, erosion, and pollution [2-3]. Climate change has exacerbated these
issues, with unpredictable weather and extreme conditions increasing the risk of crop diseases
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[4-7], threatening food security and productivity [8]. Erratic rainfall, rising temperatures, and
more frequent natural disasters have made crops more susceptible to pests and diseases [9],
leading to yield declines [8, 10, 11]. In response, farmers have increasingly relied on chemical
fertilizers and pesticides, which has come at a high environmental cost [13]. Overuse of
agrochemicals has degraded soil fertility, disrupted microbial communities, and reduced
biodiversity, especially in the Mekong Delta. Intensive rice farming, most notably triple-
cropping systems, has led to an 85% loss of organic matter, a 30% drop in available nitrogen,
and a 56% decline in phosphorus, severely impairing soil health and structure [12]. Disruption
of soil microbial balance and a decline in beneficial insects have worsened pest resistance,
particularly in species like the brown planthopper, prompting further pesticide use and ecological
imbalance [12-13]. In addition, chemical residues on agricultural products raise serious concerns
about food safety, posing potential health risks to consumers and creating challenges for exports
due to strict international standards. In 2024, the European Union issued 114 warnings over
excessive pesticide residues in Vietnamese products such as dragon fruit, chili, okra, and durian
[14]. These interconnected challenges highlight the urgent need to shift toward more sustainable
farming practices, methods that safeguard the environment, enhance farmers’ livelihoods, and
strengthen long-term resilience in the face of growing climate change threats.

Sustainable agriculture, as defined by Das et al. (2023), integrates plant and animal systems
to meet food needs while preserving natural ecosystems [15]. It requires balancing economic,
environmental, and social goals. However, transitioning from traditional to sustainable
agriculture is a complex process, particularly in the face of abiotic stresses like soil degradation,
nutrient deficiencies, and water depletion, as well as biotic stresses such as pests and diseases.
Biotechnology involves applying biological technology, primarily through transferring specific
traits via genetic material between plants or organisms, to enhance crop yields and improve
tolerance to various stresses. Artificial Intelligence (AI) refers to technologies that enable
machines and computers to replicate human intelligence, using algorithms, statistical models,
and machine learning to mimic human functions such as learning, reasoning, and self-
improvement [16]. This paper explores how biotechnology accelerated with Al can serve as
powerful tools in addressing these agricultural challenges in Vietnam to promote sustainable
agriculture.

2. BIOTECHNOLOGY IN SUSTAINABLE AGRICULTURE

Sustainable agriculture aims to nurture and maintain conditions that enable people and
nature to live together productively, supporting present and future generations. Biotechnology
in sustainable agriculture is the application of technology in biology to exploit biological
processes and scientific advances to make agriculture more efficient, environmentally friendly
and sustainable. It includes the use of tools such as genetic engineering and microbial
applications to improve crop yields, reduce chemical use, and conserve natural resources.
Genetic engineering is the process of directly altering the DNA of organisms to create new traits
or enhance existing ones. It specifically refers to the use of biotechnology to manipulate an
organism’s genetic material for improved performance; Microbial applications involve the use
of microorganisms such as bacteria, algae, fungi and plant residues in targeted ways. To promote
sustainability in agriculture, beneficial microbes are used as biofertilizers to enhance soil health
and nutrient availability, reducing the need for chemical fertilizers, and as biopesticides to offer
environmentally friendly alternatives to chemical controls by targeting pests and diseases
without harming beneficial organisms or the ecosystem. These tools enable the development of
crops with higher yields, enhanced nutritional content, improved disease resistance, and better
adaptation to environmental stresses.
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2.1. Advanced genetic engineering

Due to the serious impacts of climate change on human health, food security, and the
environment, crop plants have been extensively engineered to adapt to evolving conditions. A
range of approaches, including crossbreeding, mutational breeding, polyploidy induction,
protoplast fusion, transgenesis, and genome editing, have been employed [18]. Among these,
genetically modified (GM) and CRISPR-based techniques have emerged as the most precise and
efficient tools for modern crop breeding.

2.1.1. Genetically modified crops

GM crops are developed by inserting, deleting, or modifying genes to confer traits that do
not naturally occur in the target species. Introduced in the 1990s, GM technology typically uses
Agrobacterium tumefaciens, a bacterium that transfers genetic material via a tumor-inducing (Ti)
plasmid into the plant genome [17]. This interspecies gene transfer enables precise trait
enhancement, including increased yields, pest resistance, and nutritional improvements.
Commercial GM crops, such as maize (Zea mays), soybean (Glycine max), and cotton
(Gossypium hirsutum), have been widely adopted since 1994. By 2014, over 90% of these crops
grown in the United States were GM varieties [17]. Despite widespread benefits, including
reduced pesticide usage and improved adaptability to environmental changes [17], GM
technology has raised concerns regarding potential risks to human health, ecosystems, and
regulatory challenges [18]. Nonetheless, more than 30 GM crop varieties have been developed,
including maize, soybeans, canola, rice, and potatoes, with traits tailored for agricultural
improvement [17]. The yield of GM maize grown in Vietnam averages 8.7 tons/ha/crop, while
that of traditional maize averages only 6.7 tons/ha/crop [19]. Other advantages of GM maize
compared to conventional maize grown in Vietnam are presented in Table 1.

Table 1. Advantages of GM maize over conventional maize grown in Vietnam

Metric Advantage Source
Yield increase (%) 30.40% [20]
Production cost reduction (USD/ha) $26.47 - $31.30 [20]
Profit increase (USD/ha) $196 - $330 [21]
Return on investment $6.84 - $12.55 per $1 invested [20]
Insecticide use reduction -78% [20]
Environmental impact of the insecticide use -77% [20]
Herbicide use reduction -26% [20]
Environmental impact of the herbicide use -36% [20]

2.1.2. CRISPR-edited crops

CRISPR/Cas systems represent a transformative technology in precision plant breeding. As
one of four key sequence-specific nucleases (SSNs), alongside meganucleases, zinc-finger
nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), CRISPR/Cas
stands out for its simplicity, cost-effectiveness, and flexibility [22-27]. The CRISPR (Clustered
Regularly Interspaced Short Palindromic Repeats) technology is based on a natural defense
mechanism bacteria use to protect themselves from viral infections. When a bacterium detects
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viral DNA, it generates two short RNA molecules, one of which matches the sequence of the
invading virus. These RNAs form a complex with a protein called Cas9, a nuclease. When the
matching sequence, called a guide RNA, finds its target in the viral genome, the Cas9 cuts the
target DNA, disabling the virus. The system can be engineered to cut not only viral DNA but
also any DNA sequence at a precisely chosen site by modifying the guide RNA to match the
target. Once inside the nucleus, the resulting complex locks onto a short sequence known as the
PAM, a protospacer adjacent motif, which is a 2—6-base pair DNA sequence immediately
following the DNA sequence targeted by the Cas9 nuclease in the bacterial adaptive immune
system [28]. The PAM is a component of the invading virus or plasmid, but is not found in the
bacterial host genome and hence is not a component of the bacterial CRISPR locus. Cas9 will
not successfully bind to or cleave the target DNA sequence if it is not followed by the PAM
sequence. After Cas9 binds, the Cas9 will unzip the DNA and match it to its target RNA. If the
match is complete, the Cas9 will use its two molecular scissors to cut the DNA. When this
happens, the cell attempts to repair this break, but the repair process is error prone, often leading
to mutations that can deactivate the gene, allowing researchers to study its function. These
mutations are random but can be engineered to be more precise by replacing the mutant gene
with a healthy copy. This can be done by adding another piece of DNA that carries the desired
sequence. Once the CRISPR has made a cut, this DNA template can pair up with the cut ends,
recombining and replacing the original sequence with the new version. Unlike GM technology,
CRISPR can be used to target many genes at once. While GM crops have their genome added
with external genes, CRISPR/Cas9 ones have their genome precisely edited at desired locations.
In the world, potatoes with StDMR6-1 gene using CRISPR/Cas9 exhibited increased resistance
to late blight disease and improved tolerance to drought and salinity, all without compromising
yield or tuber quality [29-31]. Similarly, CRISPR/Cas9 has been used to engineer various crop
varieties that are more resilient to abiotic and biotic stresses, while also improving their
nutritional value, yield, etc. [27, 32-36]. The CRISPR-Cas system has also been applied to edit
the genomes of insects for pest management purposes [31, 37]. This technology has
revolutionized plant research, which enables precise crop breeding and offers new opportunities
for engineering disease resistance traits for agricultural improvement [38, 39]. In Vietnam,
significant progress has recently been made in applying this technology to successfully develop
and test CRISPR-edited crop varieties with enhanced traits (Table 2).

Table 2. CRISPR-edited crop varieties developed in Vietnam

Plant Enhanced trait Institution Source
. Agricultural Genetics
Rice Resistant t.o heavy metal' . Institute (Vietnam Academy of [40]
accumulation and bacterial leaf blight . .
Agricultural Sciences)
Reduction in indigestible sugar Institute of Biotechnology
Soybean | content and resistant to powdery (Vietnam Academy of Science [41]
mildew and Technology)
Increased sugar and amino acid Institute of Biotechnology
Tomato & (Vietnam Academy of Science [41]
content
and Technology)

2.2. Microbial applications
Microbial biotechnology offers sustainable alternatives to chemical inputs in agriculture.

Beneficial microbes can improve plant health, reduce environmental damage, and support
productivity. Two of the most impactful applications are biofertilizers and biopesticides.
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2.2.1. Biofertilizers

Soil plays a vital role in agriculture as it acts as the foundational medium for plant growth,
supplying water and essential nutrients needed for crop development. Maintaining healthy soil
is critical not only for achieving high agricultural productivity but also for ensuring clean air and
water and sustaining biodiversity within ecosystems. To support this, it is essential to improve
soil fertility and structure, supply nutrients sustainably to enhance nutrient uptake and root
development, and foster an environment that supports beneficial microorganisms. Despite these
needs, current soil management practices rely heavily on inorganic, chemical-based fertilizers.
These fertilizers, typically composed of synthetic nitrogen (N), phosphorus (P), and potassium
(K), are designed to increase plant growth and yield. Although they have greatly contributed to
agricultural advancement, their overuse or misapplication can harm both environmental and
human health. Potential negative impacts include the decline of soil fertility, contamination of
soil and water resources, destruction of beneficial microbial communities, and an increase in
pest and disease outbreaks [41-45]. Excessive use of chemical fertilizers poses significant risks
to human health, particularly through nitrate contamination and exposure to toxic chemical
compounds. Such exposure has been associated with serious health conditions, including neural
tube defects, solid organ tumors, blood-related cancers, and diabetes [46, 47]. Over time,
Vietnam has increasingly used chemical fertilizers in agriculture (Fig. 1). In 2021, Vietnam
ranked second in Southeast Asia in chemical fertilizer use, which accounted for 461.7 kg/ha, just
after Malaysia (Fig. 2). Worse still, certain regions within the country exhibit even higher usage.
For instance, the South East region averages 1,325 kg/ha, and the Central Highlands average
1,150 kg/ha, and an amount of about 40 to 60% of applied fertilizers in Vietnam are lost due to
inefficiencies, leading to environmental pollution and greenhouse gas emissions [48].
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Figure 1. Fertilizer consumption in Vietnam over time [49].

Myanmar
Cambodia
Laos
Thailand
Singapore
Brunei
India
Philippines
Indonesia
Vietnam
Malaysia

0 500 1000 1500 2000 2500
Fertilizer use (kilograms per hectare of arable land)
Figure 2. Fertilizers usage by South East Asian countries in 2021. Fertilizer products cover
nitrogenous, potash, and phosphate fertilizers (including ground rock phosphate). Traditional nutrients
(animal and plant manures) were not included [50].
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Biofertilizers play a vital role in advancing sustainable agriculture by enhancing soil
fertility, improving plant stress tolerance, and boosting crop productivity [51]. They contain
beneficial microorganisms such as plant growth-promoting rhizobacteria (PGPR), arbuscular
mycorrhizal fungi (AMF), and certain algae and fungi, which help maintain a nutrient-rich soil
environment. These microorganisms contribute through processes like nitrogen fixation,
solubilization or mineralization of phosphate, zinc, and potassium, secretion of plant growth
regulators, antibiotic production, and the biodegradation of organic matter in soil. When
applied to seeds or soil, biofertilizers multiply and actively participate in nutrient cycling,
leading to improved crop yields. PGPR, in particular, enhance phosphorus availability, fix
atmospheric nitrogen, produce siderophores that help plants access iron, and synthesize plant
hormones such as gibberellins, cytokinins, and auxins. They also generate 1-amino
cyclopropane-1-carboxylate deaminase, an enzyme that reduces ethylene levels in plants,
thereby alleviating environmental stress. Together with AMF, PGPR can increase tolerance to
drought and salinity, mitigate the effects of unfavorable soil pH, and assist in heavy metal
removal. These plant-microbe interactions have been shown to improve seed germination, root
development, leaf area, chlorophyll content, nutrient uptake, protein synthesis, shoot and root
biomass, stress tolerance, biocontrol activity, and even delay leaf senescence [41, 44, 52-59].
BioGro is a plant growth-promoting biofertilizer developed in Vietnam, comprising nitrogen
fixing and phosphorus solubilizing microorganisms, enhancing rice yields and reducing the
need for chemical fertilizers [60].

Recent advancements in omics-based technologies and microbiome engineering have
enabled the design of synthetic microbial communities (SynComs) that integrate multiple
beneficial traits for studying microbe-plant interactions. Genomic data enables the
reconstruction of microbial communities that naturally associate with plants under stress
conditions. If not already available, these microbial consortia can be cultured and isolated from
the environments where they interact with plants. They can then be inoculated onto plants in
stress conditions for identifying stress-responsive genes [61, 62]. The stress-responsive genes
can then be used to generate targeted mutants using CRISPR/Cas9 technology. Also, host-
mediated microbiome engineering [63] leverages cutting-edge omics technologies to
reintroduce genes responsible for synthesizing beneficial compounds, thereby enhancing
plant-microbe interactions and enabling plants to naturally produce their own biofertilizers.
These approaches not only increase nutrient availability within the rhizosphere — reducing
dependence on chemical fertilizers and offering environmental benefits — but also strengthen
the rhizosphere microbiome. This, in turn, improves plant health and resilience to both biotic
and abiotic stresses.

2.2.2. Biopesticides

Pesticides are chemical agents used to manage pests and protect crops from diseases.
They can be categorized by their target organisms: fungicides suppress fungal growth,
herbicides (or weedicides) eliminate unwanted vegetation, nematicides combat parasitic
worms, insecticides address insect pests such as aphids and caterpillars, rodenticides are used
to control rodents like mice and rats, and bactericides target bacterial plant pathogens.
Additionally, pesticides can be grouped based on their chemical structures, physical properties,
and mechanisms of action. Among the earliest synthetic pesticides were organochlorines,
primarily used for insect control. Other classes include carbamates and organophosphates,
both of which interfere with pest nervous systems but can also impact non-target species.
Pyrethroids, synthetic analogs of natural insecticidal compounds, and neonicotinoids, which
are chemically similar to nicotine, also act on the nervous systems of insect pests [64-66].

Pesticides are very important in agriculture, because farmers use them to increase crop yields
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[67]. While pesticides are crucial for safeguarding crops against various diseases and pests, their
use must be carefully regulated and limited to recommended dosages. Excessive application can
lead to severe health effects such as poisoning, paralysis, and even death. Prolonged exposure has
also been linked to chronic health conditions including cancer, cardiovascular disease, respiratory
problems, and neurological impairments [68]. Beyond human health, pesticide residues can
contaminate the environment after application, negatively impacting non-target organisms such as
beneficial insects, plants, animals, aquatic species, and birds [65]. In Vietnam, South Central Coast
area uses up to 9.5 kg of pesticides per hectare (Fig. 3).
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Figure 3. Amounts of pesticides used in cultivation in different areas in Vietnam [48].

A safer and more environmentally friendly alternative to chemical pesticides is the use
of biopesticide formulations, which are derived from natural sources such as bacteria, fungi,
minerals, or plant-based extracts. Semiochemicals like pheromones are also used to influence
pest behavior by attracting them to traps or repelling them from crops. Biopesticides provide
a sustainable solution, typically targeting specific pests with minimal harm to non-target
organisms. They exhibit less toxicity, quick decomposition, low exposition characteristics, and
reduced risks of persistence, bioaccumulation, and environmental toxicity compared to
synthetic pesticides [65]. However, as noted by Pan et al. (2023), biopesticides currently
represent only a small share of the global crop protection market, around 5%, valued at
approximately US$3 billion worldwide [66].

Similar to biofertilizers, Vietnam has also just engaged and researched the production of
biopesticides, which are only at the level of products containing beneficial microorganisms
that are able to control pathogens on crops, such as preparations containing 7richoderma,
Bacillus, Streptomyces, etc. [69].

Bacillus thuringiensis (Bt) can be used as Bt-based biopesticides. In the alkaline gut
environment of insects, Bt Cry protoxins are processed by proteases into their active forms.
These activated toxins bind to specific receptors on the insect’s gut lining, forming pores that
damage cell membranes and ultimately cause the insect’s death [70]. To enhance biological
pest control, nanotechnology has been applied in the development of Bt-based biopesticides,
resulting in more efficient, stable, and environmentally friendly formulations [66]. Genetically
engineered crops, known as plant-incorporated protectants, can produce their own pest
resistance. For example, crops modified through Agrobacterium-mediated transformation
have been engineered to carry Bt genes in their genomes [71]. Additionally, genome editing
techniques like CRISPR/Cas systems have been widely used to develop pest-resistant crop
varieties [30, 37, 72, 73].
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These sustainable and advanced strategies are expected to play a crucial role in integrated
pest management by minimizing reliance on external pesticide applications.

3. THE SYNERGY BETWEEN BIOTECHNOLOGY AND ARTIFICIAL
INTELLIGENCE

Al has been widely applied in many different fields of biotechnology [74]. In the context
of sustainable agriculture, biotechnology provides tools to enhance crop robustness, pest
resistance, and resource efficiency. Al can further strengthen these tools by utilizing machine
learning (ML). ML uses different methods like supervised learning (learning from labeled
data), unsupervised learning (identifying patterns in unlabeled data), and reinforcement
learning (learning through trial and error with feedback) and utilizes algorithms to enable
computers to identify data patterns, make decisions, and predict outcomes [75].

Advanced genetic engineering can help develop crop varieties that adapt to changing
environments, while integrating Al with biotechnology further enhances outcomes, such as
optimizing CRISPR applications, developing disease-resistant crops, managing resources such
as biofertilizers and biopesticides. Genomics and CRISPR gene editing often involve large-
scale data. To minimize off-target effects and reduce screening time, ML algorithms can
predict which CRISPR/Cas9 cleavage sites will be cut by a given single-guide RNA (sgRNA)
[76, 77]. It is crucial to design and optimize CRISPR/Cas9 editing systems by (1) Optimizing
editing efficiency, including (i) predicting the impact of different guide RNAs on editing
efficiency and (ii) predicting the impact of different Cas variants on editing efficiency; (2)
Optimizing editing specificity, including (i) designing high-specificity guide RNA and (ii)
optimizing the editing protein; and (3) Predicting genome editing outcomes [78, 79]; ML also
plays an important role in mining the breeding-related genes and detecting the key elements and
factors that regulate the expression of these genes; In fact, processes of identifying trait-related
genes are often very laborious, because regulatory relationships among genes and their
associations to traits are very complicated. Therefore, integration and analysis of multiple omics
data with ML techniques can accelerate the process of gene discovery and prioritization,
enabling the screening of candidate trait-related genes and their regulatory relationship, to
identify potential targets for genome editing [79, 80]. Also, as SynComs allow recognition of
stress-responsive genes [61, 62], Figure 4 depicts the process of development of biofertilizers,
biopesticides, and high-yield, resilient crop varieties.

In plant science, high-throughput phenotyping (HTP) enables rapid and large-scale trait
analysis. When paired with Al and ML, HTP data can uncover patterns and associations
between traits like growth, yield, stress tolerance, and disease resistance, and their underlying
genetics [81, 82]. Deep learning (DL), a subtype of ML using multi-layered networks such as
convolutional neural networks (CNNs) and deep belief networks (DBNs), is particularly
effective for image-based plant disease detection [83-88].

Al, integrated with IoT, big data, and cloud computing, supports precision agriculture by
simulating plant diversity, selecting effective biofertilizers, identifying suitable microbial
strains, and turning complex data into insights on soil, climate, and crop performance [89-94].
Advances in Al-powered technologies, such as drones, robotics, smart irrigation, machine
learning for weed detection, and predictive analytics, have improved monitoring accuracy,
reduced chemical use, increased yields, lowered labor costs, and enhanced the precision of
yield and pest outbreak predictions [92-95].

33



Phan Thi Huyen

GENOMIC
INFORMATION
Fungi
§ SynCom(s) 'ﬁé
GENOMIC GENOMIC
INFORMATION INFORMATION
Plants Bacteria

PLANT-MICROBE INTERACTIONS
BACTERIA

Environmental change-responsive gene(s)

MACHINE LEARNING

«Supervised SEQUENCES CLUSTERING
Learning ‘ATGCAYG[A ®
*Unsuperviseed |TAGCTAGCT @ e

Learning CLUSTERING HISTOGRAM

528 (alln

Cas9 B SgRNA
\
- r_/—r—* —— PAM sequence
MDOX i Moo

-

Target sequence

8L V%

Biofertilizers High-yield, climate-
Biopesticides resilient crop varieties

Figure 4. Illustration for integrated-machine learning CRISPR/Cas9 technology in production
of biofertilizers, biopesticides, and high-yield, resilient crop varieties.

4. GLOBAL APPLICATIONS OF BIOTECHNOLOGY IN AGRICULTURE

In recent years, the integration of biotechnology and Al has brought major advancements
to global agriculture. Biotechnology has made it possible to develop genetically enhanced crops
that are more resistant to pests, diseases, and environmental challenges, thereby reducing the
need for chemical inputs and boosting productivity. Tools like CRISPR/Cas9 have sped up the
development of climate-adapted plant varieties, while microbial-based biofertilizers and
biopesticides are being adopted to improve soil health and minimize chemical pollution. At the
same time, Al, through machine learning, predictive analytics, and remote sensing, has
transformed how crops are monitored, diseases are detected, and resources are managed.
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The United Kingdom (UK) stands at the forefront of genomics research, focusing on
developing crops that are more resilient to climate change and resistant to diseases, while reducing
dependency on chemical inputs. In March 2023, the Genetic Technology (Precision Breeding) Act
became law, establishing a regulatory framework for Precision Bred Organisms — organisms with
genetic modifications that could also occur naturally or through traditional breeding methods. This
legislation, supported by cutting-edge UK research, aims to improve breeding efficiency and
produce healthier, more sustainable, and climate-resilient plants and animals [96, 97]. Precision
breeding involves genome editing to introduce desirable traits, and the UK joins countries like the
United States, Argentina, Australia, etc. in officially supporting this approach.

As of 2022, the United States (U.S.) led global GM crop production with 71.5 million
hectares (M ha), mainly cotton, maize, and soybean, followed by Brazil (52.8M ha), Argentina
(24M ha), Canada (12.5M ha), and India (11.9M ha) [98]. Bayer and Pairwise used CRISPR
to develop less bitter, nutrient-rich mustard greens for the U.S. market, demonstrating gene
editing’s potential for improved crop traits [99]. U.S. agriculture is also adopting Al-powered
precision tools, such as satellite imagery, soil data, and computer vision, for optimized
farming, with companies like Farmonaut enhancing accessibility to these innovations [100].

Australia classifies gene-edited crops into SDN-1, SDN-2, and SDN-3, each with distinct
regulatory rules [101]. In 2024, InterGrain and Inari companies began CRISPR- and Al-based
trials of high-yield wheat strains, aiming for commercial release by 2028. Researchers have
also developed nitrogen-efficient barley and wheat using CRISPR/Cas9, enhancing traits like
yield, flowering time, and plant height [102]. The Western Crop Genetics Alliance created
CRISPR-edited barley with up to 50% more nitrogen uptake and 30% higher yields using less
fertilizer, highlighting Australia’s push for sustainable, resilient crops [103].

In Canada, gene-edited crops fall under the "Plants with New Traits" regulatory framework,
which evaluates the final plant traits rather than the editing technique used [104].

In many African countries, rainfed agriculture and subsistence farming make food systems
highly vulnerable to climate change, particularly for crops like banana, which are sensitive to
temperature and rainfall shifts. CRISPR/Cas9 has been used to improve stress resistance and
nutrition in staple crops, with several nations establishing biosafety regulations [105]. Kenya
approved Bt cotton in 2019, boosting seed production by 16% in 2020, and lifted its GMO ban
in 2022 to permit Bt maize and virus-resistant cassava, despite some legal delays. The National
Biosafety Authority has since approved 58 GMO-related projects [106, 107].

Delays in GM crop adoption have cost Kenya an estimated $157 million, with projected
benefits of $467 million over 30 years. After the 2022 court ruling upheld the end of a decade-
long GMO ban, Kenya can now advance Bt maize, Bt cotton, and disease-resistant potatoes. The
Environment Court’s dismissal of a legal challenge cleared the way for GMO cultivation and
import, reinforcing scientific consensus on GMO safety and aligning Kenya with at least ten
other African nations adopting Bt cotton hybrids for pest resistance [108-110].

Similarly, nations like India and Brazil are integrating Al-driven technologies and
biotechnology to boost productivity, reduce environmental impact, and support sustainable
agriculture [111, 112].

The integration of biotechnology and Al is transforming global agriculture by boosting
yields and sustainability — lessons Vietnam can adopt amid its transition from chemical-
dependent farming [113]. To ensure food security and ecological balance, Vietnam needs to
expand the use of GM and CRISPR-edited crops, biofertilizers, and biopesticides, which offer
higher yields, improved resilience, and reduced chemical reliance. Notable progress includes the
2023 approval of six GM corn hybrids and increasing imports of GM soybeans, corn, and cotton
[114]. Since 2015, over 1.3M ha of GM crops have been cultivated, with profits 1.5 to 2 times
higher than traditional crops [115]. Advancing gene-editing and Al is crucial to keep pace with
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global trends. With Resolution No. 68-NQ/TW aiming to strengthen the private sector’s
economic role by 2030, Vietnam is well-positioned to invest in biotech research, infrastructure,
and supportive policies [116, 117].

5. POLICY AND INVESTMENT IN BIOTECNOLOGY FOR AGRICULTURAL
TRANSFORMATION

After nearly 40 years of reform, Vietnam has made significant progress toward achieving
the United Nations Sustainable Development Goals (SDGs), with agriculture playing a central
role [118, 119]. Despite these advancements, the agricultural sector continues to face major
challenges, including uneven growth, environmental degradation, shortages of high-quality
labor, and low productivity [120]. To overcome these issues, Vietnam is prioritizing scientific
research, digital transformation, and the adoption of advanced technologies such as
biotechnology and smart agriculture [121].

The country’s national action plan supports the development of biotechnology across
agriculture, healthcare, and environmental sectors, aiming to position Vietnam among the top
ten biotechnology producers in Asia by 2030. By that time, the biotechnology sector is
expected to contribute 7% to the national GDP, increasing to as much as 15% by 2045 [122,
123]. To support these goals, Vietnam is also enhancing its legal frameworks and encouraging
cross-sector collaboration [124]. Key strategic priorities include building infrastructure,
developing a skilled workforce, and strengthening international partnerships. At the same time,
the country is promoting eco-friendly, low-carbon, and climate-resilient agricultural practices.
Resolutions No. 36-NQ/TW and No. 57-NQ/TW reinforce Vietnam’s ambitions to lead in
biotechnology by promoting increased investment in science and innovation, and encouraging
collaboration in biotechnology and Al [123, 125]. Several policies have been launched to
accelerate agricultural biotechnology. These include the Key Program for the Development
and Application of Biotechnology in Agriculture and Rural Development (until 2020), the
Project on the Development and Application of Biotechnology in Aquaculture (until 2020),
and the Project for the Development of Agricultural Biotechnology (until 2030), all aimed at
enhancing sustainability and resilience to climate change. Together with legal reforms and
initiatives to promote new crop varieties, these efforts are designed to help Vietnam become a
regional leader in biotechnology [115].

However, the adoption of biotechnology in Vietnam has been slow, and the gap between
Vietnam and the rest of the world is widening. It still faces critical barriers due to policy gaps,
regulatory inefficiencies, and implementation challenges. The country has yet to establish
dedicated investment policies for biotechnology research infrastructure and funding, and for
training specialized human resources. Additionally, there is a need to simplify the registration
process for biological products and to develop comprehensive legal frameworks with clear
regulations for genome-edited crops — essential steps for ensuring legal certainty and fostering
innovation [126-128].

To make research more impactful, investment in research should prioritize outcomes such
as biofertilizers, biopesticides, and high-yield, climate-resilient crop varieties. Given ongoing
concerns that overreliance on state-run projects may constrain basic research, a more open and
collaborative model involving regulators, scientists, and industry is recommended to more
effectively translate research into practical applications [115]. Furthermore, the authority to
manage and operate specialized biotechnology research facilities should be granted to
individuals with deep, field-specific expertise, rather than exclusively to those with high-level
academic titles lacking specialized experience in the field. Finally, there should be a mechanism
for improving public-private partnerships and increasing commercialization rates to accelerate
the translation of research into real-world solutions.
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6. CONCLUSIONS

Vietnam’s traditional agriculture has heavily depended on chemical fertilizers and
pesticides to boost yields and combat crop diseases, seriously affecting human health, polluting
the environment and causing ecological imbalance. Transitioning to sustainable agriculture is
essential. While the government has issued policies supporting biotechnology and GM crops to
enhance resilience and productivity, progress in research and product development remains
limited, with underdeveloped infrastructure and human resources. To advance, Vietnam needs
to learn from global sustainable agriculture practices and integrate biotechnology with Al to
accelerate genetic engineering, improve understanding about plant-microbe interactions for
development of gene-edited crops, biofertilizers, and biopesticides. A clear legal framework for
innovations like gene editing, increased investment, streamlined regulation, and stronger public-
private collaboration are crucial. With these efforts, Vietnam can build a resilient, eco-friendly
agricultural sector and position itself as a regional leader in sustainable farming.
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PHAT TRIEN NONG NGHIEP BEN VUNG O VIET NAM
VOI CONG NGHE SINH HOC VA TRi TUE NHAN TAO

Phan Thi Huyén*
Bo mén Cong nghé Sinh hoc, Khoa Ky thudat Hoa hoc, Truwong Pai hoc Bach Khoa,
Pai hoc Quéc gia, Thanh phé Ho Chi Minh, Viét Nam
*Email: huyencnshbk@hcmut.edu.vn

Nong nghiép Viét Nam dang ngay cang chiu t6n thuong trude tac dong cua blen dbi khi
héu, lam gia tang ca tan suat 1an muc do nghiém trong cua cac bénh gay hai cay trong, khién
néng dan gap nhleu kho khan trong viéc duy tri ndng suat. Pé timg pho, phan bon va thude trir
sdu c6 ngudn goc hoa hoc da dugc sir dung phd bién. Tuy nhién, viéc s dung qua murc da gay
suy thoai dét, dong thoi 1am ddy 1én nhimng lo ngai sau sic vé an toan thuc pham strc khoe
cong dong va 6 nhiém moi trudng. Trude nhimg thach thirc d6, viéc chuyén doi sang mot nén
néng nghiép bén viing 13 yéu ciu cip thiét, nham bao dam ning suit va nang cao kha ning
phuc hdi cta hé sinh thai. Bai bao nay phan tich hudng di ma nong nghiép Viét Nam co thé
theo dudi dé tré nén bén ving hon thong qua viéc tich hop cong nghé sinh hoc va tri tué¢ nhan
tao (Al). Cong ngh¢ sinh hoc cung cap nhirng giai phap dot pha gitp giam su phy thude vao
viée str dung cac hoa chét doc hai, dong thoi cai thién chét lugng dat va stic khoe cay trong.
Khi tich hop véi Al cong nghé sinh hoc c¢6 thé nang cao hiéu qua va do chinh xéc trong viéc
phat trién phan bon sinh hoc, thudc bao vé thyuc vét sinh hoc, ciing nhu cac giéng cy trong c6
nang suét cao va kha nang thich ing voi bién d6i khi hau. Tham chiéu cac mo hinh thyc té da
trién khai & nhiéu quoc gia trén thé gioi, bai bdo 1am rd Viét Nam hoan toan co thé ap dung
cac cong nghé nay dé giai quyet cac van dé nong nghiép ma Viét Nam dang d6i mat. Viéc ap
dung c6ng ngh¢ sinh hoc véi cac giai phap dugce tang cudng hiéu qua va do chinh xac boi tri
tu¢ nhan tao vao néng nghiép cd tiém ning chuyén d6i nén nong nghiép Viét Nam thanh mét
nén nong nghiép hién dai, than thién v61 moi truong, hai hoa gitra nang suét va tinh bén viing.
Tuy nhién, dé hién thyc héa sy chuyén ddi nay, cin co sy déu tu manh m& vao nghién ctru va
ha tang ky thuat cong nghé sinh hoc, vao dao tao va phat trién nguon nhan lyc ¢6 trinh do
chuyén mén cao, song song véi viéc thiét 1ap hanh lang phap ly ddy du va rd rang dé béo trg
cho céc tién trinh d6i méi va sang tao. Thong qua viéc hoc hoi kinh nghiém qudc té va diéu
chinh linh hoat theo diéu kién trong nudc, Viét Nam c6 thé kién tao mot nén nong nghiép vimg
bén va thich mg hiu qua, dam bao an ninh luong thyc va bao vé moi truong trong bbi canh
khi hiu bién ddi ngay cang gay gat.

Tvr khéa: Cong ngh¢ sinh hoc noéng nghiép, tri tu¢ nhan tao, phén bon sinh hoc, thudc trir sau
sinh hoc, CRISPR/Cas9, nong nghiép bén viing.
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